

Die Rolle von Wasserstoff in einem zunehmend klimaneutralen Energie-(und Industrie-) System

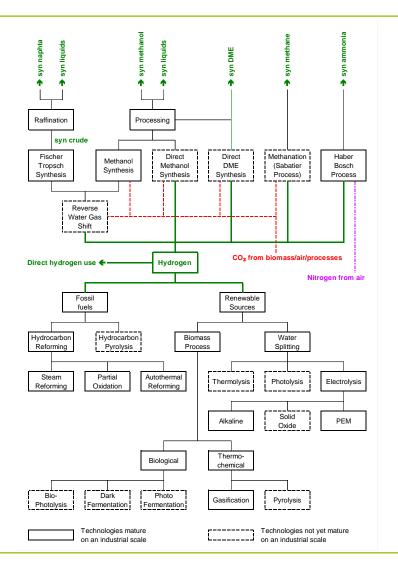
Online-Fachtagung E-Control

» Wasserstoff – wie wird aus dem Hype ein tatsächlicher Beitrag zur Energiewende «

Dr. Felix Chr. Matthes

Berlin, 29. April 2021

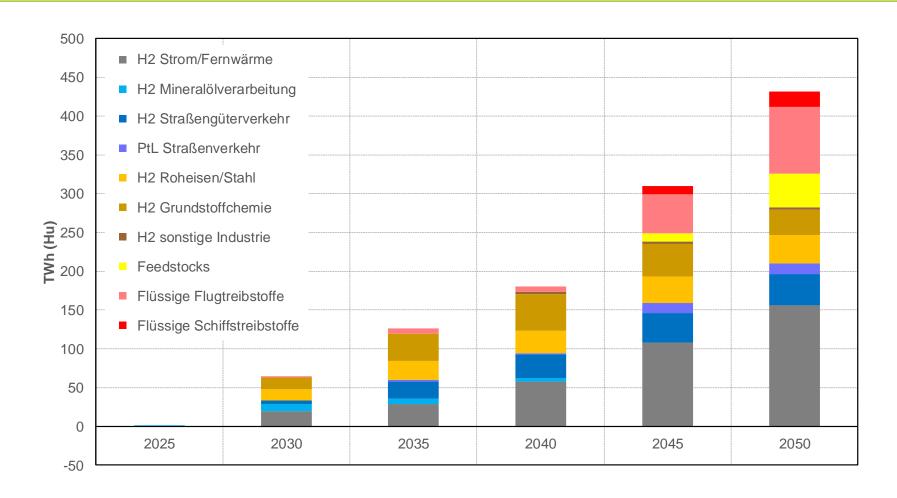
Wasserstoff in einer klimaneutralen Volkswirtschaft Warum es im Kern geht


Wasserstoff ist die vierte S\u00e4ule einer klimaneutralen Volkswirtschaft

- 1. Energieeffizienz
- 2. Erneuerbare Energien zum Direkteinsatz und zur Stromerzeugung
- 3. Elektrifizierung
- 4. Wasserstoff und wasserstoffbasierte Energieträger und Rohstoffe
- 5. Sonstiges & negative Emissionen

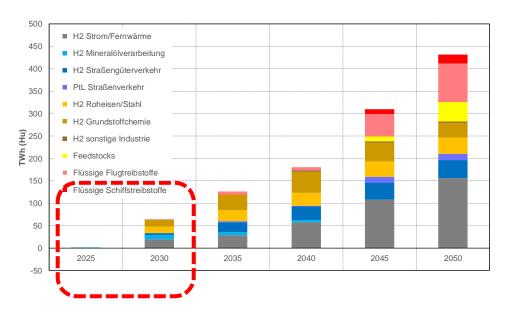
Klimaneutraler Wasserstoff

- erfordert große Mengen an grünem Strom
- kann in begrenzten Menge und Zeiträumen auch (als weitgehend klimaneutraler Wasserstoff) aus Erdgas mit CCS erzeugt werden
- ist heute sehr teuer und bleibt auch langfristig relativ teuer (erfordert auch perspektivisch hohe CO₂-Preisniveaus für die Kostenparität)
- wird großteils aus Regionen mit guten Erzeugungsbedingungen importiert werden (müssen), Herausforderung: Transportoptionen


Wasserstoff in einer klimaneutralen Volkswirtschaft Mehr eine Plattform als "nur" ein Energieträger/Rohstoff

vielfältige Herstellungspfade

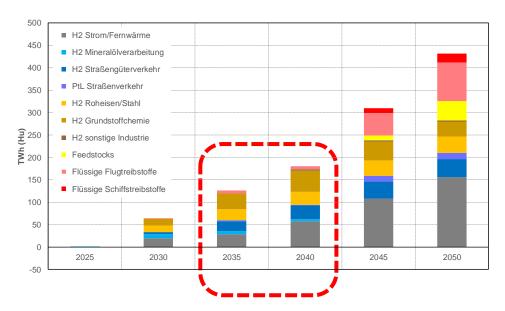
- grau: aus fossilenEnergieträgern ohne CCS
- grün: vollständig aus (zusätzlichen) erneuerbaren Energien (Elektrolyse)
- blau: aus Erdgas (Dampfreformierung) + CCS
- türkis: aus Erdgas (Pyrolyse)
 (Produkte: H₂ + Kohlenstoff)
- pink/gelb: aus Kernenergie
- direkte Nutzung von Wasserstoff
- vielfältige Herstellungspfade für wasserstoffbasierte Energieträger und Rohstoffe


Wasserstoff & wasserstoffbasierte Energieträger/Rohstoffe Treibhausgasneutrales Deutschland: Mengen & Trajektorien (1)

Wasserstoff & wasserstoffbasierte Energieträger/Rohstoffe Treibhausgasneutrales Deutschland: Mengen & Trajektorien (2)

Phase 1 bis 2030

1a (bis 2025): Strukturierung & Initiierung
1b (2025/2030): beginnender Volumenhochlauf
Industrie & Raffinerien



- Strom-/Fernwärme: Integration variabler regenerativer Stromerzeugung (Ausbauzielen von ca. 70% bei mäßig steigendem Stromverbrauch) in Kombination mit Fernwärme (Treiber: Umbau des Stromsystems)
- Industrie: Initialphase eines relativ stetigen Hochlaufs (Treiber: Struktur der Kapitalstöcke, tlw. Vermeidungskosten)
- Raffinerien: Ersatz fossilen Wasserstoffs (Treiber: Vermeidungskosten)
- Verkehr: Markttest und ggf. Anfang des Markthochlaufs für Wasserstoff-Lkw (Schwerlast-Ferngüterverkehr)
- sonst nur Nischenanwendungen
- Infrastrukturkonzeption und Umsetzung von No-regret-Infrastrukturen
- Innovationsvorlauf

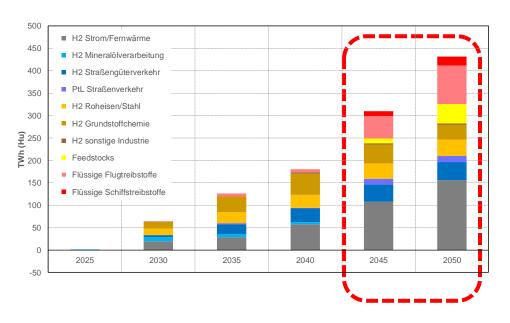
Wasserstoff & wasserstoffbasierte Energieträger/Rohstoffe Treibhausgasneutrales Deutschland: Mengen & Trajektorien (3)

Phase 2 bis 2040

2a (bis 2035): Volumenhochlauf Fernlast-LKW und synthetische Flugtreibstoffe

- Strom-/Fernwärme: Variable regenerative Stromerzeugung (Ausbauziele Richtung 80% bei stark steigendem Stromverbrauch) in Kombination mit Fernwärme (Treiber: Umbau des Stromsystems, grüne Fernwärme)
- Industrie: fortgesetzter stetiger Hochlauf inklusive Sektorausweitung (Treiber: Struktur der Kapitalstöcke, tlw. Vermeidungskosten)
- Raffinerien: abnehmende Bedeutung (Treiber: Produktennachfrage)
- Verkehr: Markthochlauf für Wasserstoff-Lkw (Schwerlast-Ferngüterverkehr) sowie erster PtL-Segmente im Flugverkehr (kritische Phase 2a)
- sonst nur Nischenanwendungen
- Umsetzung längerfristig robuster Infrastrukturen
- Innovationsvorlauf

Wasserstoff & wasserstoffbasierte Energieträger/Rohstoffe Treibhausgasneutrales Deutschland: Mengen & Trajektorien (4)


Phase 3 bis 2050

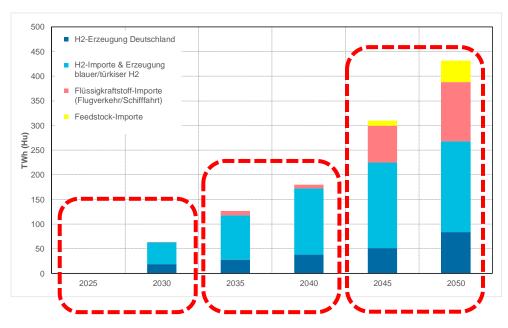
3a (bis 2045): Durchbruch synthetische Flugtreib-

stoffe, Volumenhochlauf synthetische

Schiffahrtstreibstoffe & grünes Naphta

3b (2045/2050): Durchbruch grünes Naphta

- Strom-/Fernwärme: Regenerative Vollversorgung Strom & Fernwärme bei weiterhin stark steigendem Stromverbrauch (Treiber: Umbau des Stromsystems, grüne Fernwärme)
- Industrie: fortgesetzter stetiger Hochlauf, grünes Naphta als neuer großvolumiger Feedstock (kritische Phase 3a, Treiber: Struktur der Kapitalstöcke, Klimaneutralität)
- Verkehr: PtL-Segment im Flugverkehr im Flugverkehr wird dominierend, PtL-Segment in der Schifffahrt entwickelt sich stark (kritische Phase 3a, Treiber: Klimaneutralität)
- sonst nur Nischenanwendungen
- voll entwickelte Infrastrukturen (gasförmig, flüssig)
- Innovationsvorlauf


Wasserstoff & wasserstoffbasierte Energieträger/Rohstoffe Treibhausgasneutrales Deutschland: Importe (1)

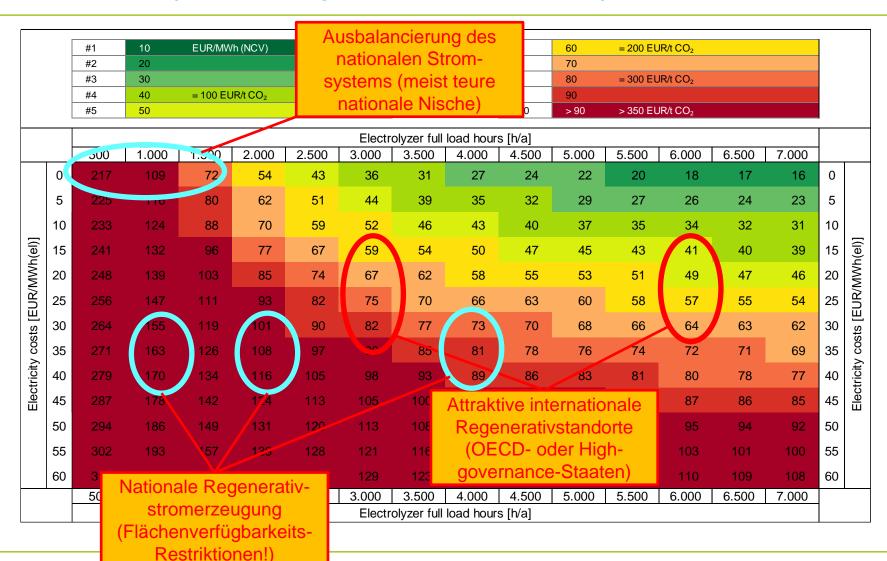
Wasserstoff & wasserstoffbasierte Energieträger/Rohstoffe Treibhausgasneutrales Deutschland: Importe (2)

Importe und deren Determinanten

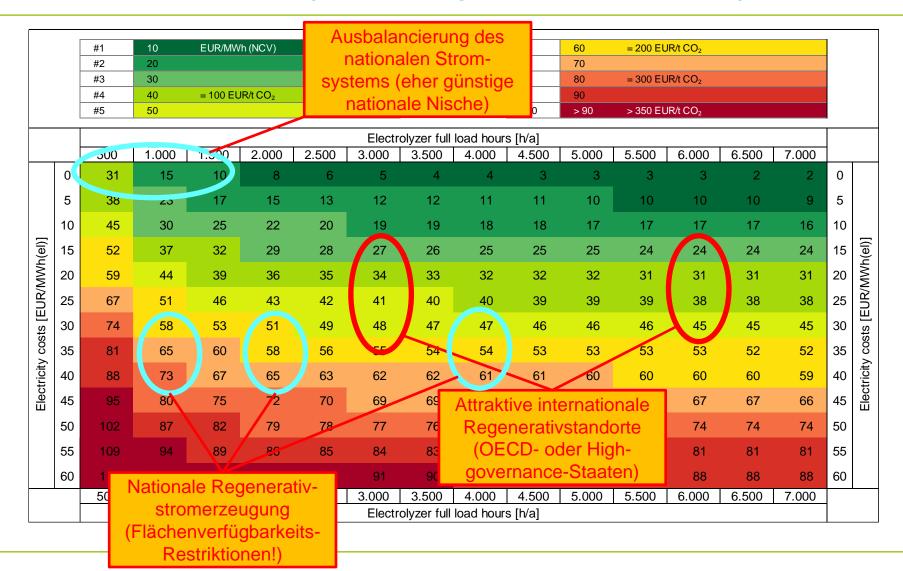
- einheimisches Angebot an sehr preisgünstigem regenerativen Strom und guten Auslastungen
- ausländisches und globales Angebot
- Transportkosten

Phase 1

- 1/3 heimischer grüner Wasserstoff
- XX% Importe grünen Wasserstoffs aus näherem europäischen Ausland
- XX% Erzeugung blauer Wasserstoff an Küstenstandorten


Phase 2

- 1/4...1/5 heimischer grüner Wasserstoff
- XX% Importe grünen Wasserstoffs aus näherem europäischen Ausland
- XX% Importe grünen Wasserstoffs aus MENA-/Nahost
- begrenzter Sockel an blauem/türkisen Wasserstoff
- offene Frage: Wasserstoffimporte aus Russland/GUS


Phase 3

- 1/3...1/5 heimischer grüner Wasserstoff
- globale Importe grünen Wasserstoffs
- globale Importe synthetischer Treibstoffe und Feedstocks

Kosten von grünem Wasserstoff Status Quo (ohne Transportkosten, 5% WACC)

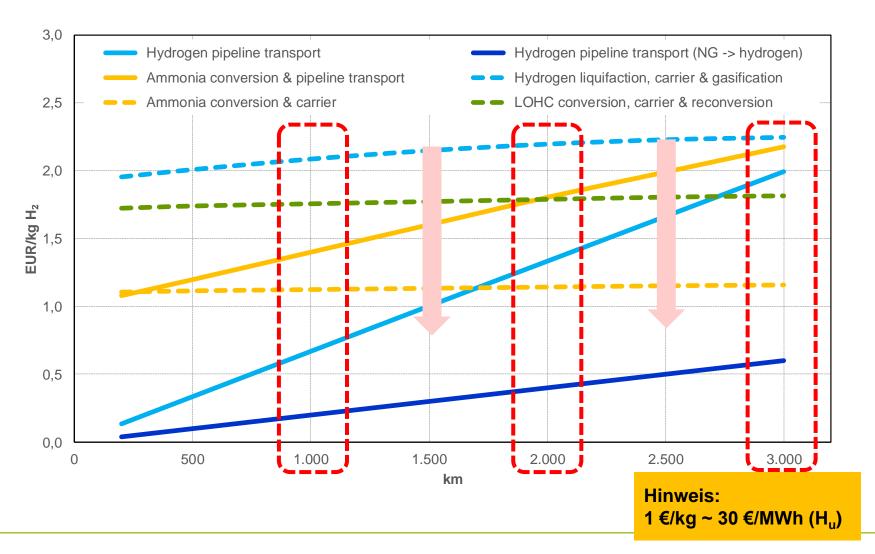
Kosten von grünem Wasserstoff Durchbruch-Szenario (ohne Transportkosten, 5% WACC)

Kosten von grünem Wasserstoff Durchbruch-Szenario (mit Transportkosten 0.5 €/kg H₂, 5% WACC)

	Г															1	
		#1	10	EUR/MW	/h (NCV)					#6	60	= 200 EU	JR/t CO ₂				
	}	#2	20 30							#7	70 80	200 51	ID# CO				
	ŀ	#4	40	= 100 EL	ID# CO					#8 #9	90	= 300 EL	JR/I CO ₂				
	ŀ	# 4 #5	50	= 100 EC	JINI CO ₂					#10	> 90	> 350 FL	IR/t CO ₂				
	L	#5 50 #10 > 90 > 350 EUR/t CO ₂															
									l load hour								
		500	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000	5.500	6.000	6.500	7.000		т
	0	35	25	22	20	19	18	18	17	17	17	17	17	17	16	0	
	5	42	32	28	27	26	25	25	24	24	24	23	23	23	23	5	
	10	48	38	35	33	32	32	31	31	31	30	30	30	30	30	10	
(el)]	15	55	45	42	40	39	38	38	37	37	37	37	37	37	36	15	(el)]
MWh	20	62	52	48	47	46	45	45	44	44	44	43	43	43	43	20	MWh
UR/I	25	68	58	55	53	52	52	51	51	51	50	50	50	50	50	25	UR/I
ts [E	30	75	65	62	60	59	58	58	57	57	57	57	57	57	56	30	costs [EUR/MWh(el)]
Electricity costs [EUR/MWh(el)]	35	82	72	68	67	66	OF.	65	64	64	64	63	63	63	63	35	
tricity	40	88	78	75	73	72	72	71	71	71	10	70	70	70	70	40	Electricity
Elect	45	95	85	82	80	79	78	78	Attrak	tive int	ernatio	nale	77	77	76	45	Eleci
	50	102	92	88	87	86	85	85	Regenerativstandorte				83	83	83	50	
	55	108	98	95	93	92	92	91	(OE	CD- o	der Hig	90	90	90	55		
	60	115	105	102	100	99	98	98	gove	rnance	e-Staat	97	97	96	60		
		500	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000	5.500	6.000	6.500	7.000		
							Electr	olyzer ful	l load hour	s [h/a]							

Kosten von blauem Wasserstoff Status quo (ohne Transportkosten, 5% WACC)

	[#1	10	EUR/MW	/b (NC\/)			1		#6	60	= 200 EU	P# CO				
	}	#1	20	LONINI	m (NCV)					#7	70	= 200 E0	IVI CO ₂				
		#3	30							#8	80	= 300 EU	R/t CO ₂				
		#4	40	= 100 EU	JR/t CO ₂					#9	90						
	[#5	50							#10	> 90	> 350 EU	R/t CO ₂				
		CO₂ price [€/t]															
	-	0	25	50	75	100	125	150	175	200	225	250	275	300	325		
	6	31	32	32	33	34	35	35	36	37	38	38	39	40	41	6	
	8	34	35	35	36	37		Dro	ماريادان م	in	4 1	41	42	43	44	8	
[5	10	37	38	38	39	40			duktior	ı ırı z.B. an	43	44	45	46	46	10	7)]
	12	40	40	41	42	43				ten mit		47	48	49	49	12	(NC)
costs [EUR/MWh(NCV)]	14	43	43	44	45	46	'`		ore-C		49	50	51	51	52	14	/Wh
URA	16	45	46	47	48	48	49	50	51	51	52	53	54	54	55	16	URA
IS (E	18	48	40	50	-	51	52	53	54	54	55	56	57	57	58	18	costs [EUR/MWh(NCV)]
	20	51	52	53	54	54	55	56	56	57	58	59	59	60	61	20	
gas	22	54	55	50	56	57	58	59	59	60	61	62	62	63	64	22	gas
Natural gas	24	57	58	59	59	60	61	62	62	63	64	64	65	66	67	24	Natural
Z	26	60	61	61	62	63	64	64	65	66	67	67	68	69	70	26	Na
	28	63	64	64	65	66	67	67	68	69	70	70	71	72	73	28	
	30	66	67	67	68	69	69	70	71	72	72	73	74	75	75	30	
		0	25	50	75	100	125	150	175	200	225	250	275	300	325		
								CO ₂ pr	ice [€/t]								


Kosten von synthetischen Flüssigkraftstoffen Status quo (ohne Transportkosten, 5% WACC)

	[#1	60	EUR/MW	h (NCV)					#6	110	= 200 EU	JR/t CO ₂				
	ľ	#2	70							#7	120						
		#3	80	= 100 EU	JR/t CO ₂					#8	130						
		#4	90							#9	140	= 300 EU	JR/t CO ₂				
		#5	100 × 140 × 300 EUR/t CO ₂														
								O ₂ supply	/ costs [€/	t]							
		0	25	50	75	100	125	150	175	200	225	250	275	300	325		
	30	55	62	68	75	81	88	95	101	108	115	121	128	135	141	30	
	40	68	74	81	88	94	101	108	114	121	128	134	141	148	154	40	
	50	80	87	94	100	107	114	120	127	134	140	147	154	160	167	50	[[
SC.	60	93	100	107	113	120	127	133	140		155	160	167	173	180	60	NC.
1Wh	70	106	113	119	126	133	139	146	153	159	166	173	179	186	193	70	[EUR/MWh(NCV)]
JR/N	80	119	126	400 Dro	400 dudatio	A A C	450	159	166	1/2	170	186	192	199	206	80	JR/N
costs [EUR/MWh(NCV)]	90	132	138			_	ünstige nerativ		178	185	192	198	205	212	218	90	s [El
	100	145	151				CD) m		191	198	205	211	218	225	231	100	costs
gen	110	157	164				n CO2	\ -	204	211	217	224	231	237	244	110	gen
Hydrogen	120	170	177	184	190	197	204	210	217	224	230	237	243	250	257	120	Hydrogen
	130	183	190	196	203	210	216	223	230	236	243	250	256	263	270	130	
	140	196	203	209	216	223	229	236	242	249	256	262	269	276	282	140	
	150	209	215	222	229	235	242	249	255	262	269	275	282	289	295	150	
		0	25	50	75	100	125	150	175	200	225	250	275	300	325		
							C	O ₂ supply	/ costs [€/	t]							

Kosten von synthetischen Flüssigkraftstoffen Durchbruch-Szenario (mit Transportkosten 2 €/MWh, 5% WACC)

																•	
		#1	60	EUR/MW	/h (NCV)					#6	110	= 200 EU	JR/t CO ₂				
		#2	70							#7	120						
		#3	80	= 100 EL	JR/t CO ₂					#8	130	000 51	ID# 00				
										140 > 140	= 300 EU						
	Į.	#5	100						ļ	#10	> 140	> 300 EC					
		CO₂ supply costs [€/t]															
		0	25	50	75	100	125	150	175	200	225	250	275	300	325		
	30	50	56	63	70	76	83	90	96	103	109	116	123	129	136	30	
	40	62	69	75	62	89	95	102	109	115	122	129	135	142	149	40	
	50	75	81	88	95	101	108	115	121	128	134	141	148	154	161	50	[[
NCV	60	87	94	100	107	114	120	127	134	140	147	154	160	167	174	60	NC
costs [EUR/MWh(NCV)]	70	100	106	113	120	126	133	140	146	153	159	166	173	179	186	70	costs [EUR/MWh(NCV)]
JR/N	80	112	119	125	132	139	145	152	159	165	172	179	185	192	199	80	JR/N
EL	90	125	131	138	145	151	158	165		Produktion an günstigen 198 204							s [EL
costs	100	137	144	150	157	164	170	177	_		Regen		210	217	224	100	costs
	110	150	156	163	170	176	183	190			n (OEC		223	229	236	110	gen
Hydrogen	120	162	169	175	182	189	195	202	KIII	naneu	tralem	CO2	235	242	249	120	Hydrogen
**	130	175	181	188	195	201	208	215	221	228	234	241	248	254	261	130	T
	140	187	194	200	207	214	220	227	234	240	247	254	260	267	274	140	
	150	200	206	213	220	226	233	240	246	253	259	266	273	279	286	150	
		0	25	50	75	100	125	150	175	200	225	250	275	300	325		
							C	O ₂ supply	/ costs [€/	t]							

Merkposten: Die Kosten von Wasserstoff-Langstreckentransport Derzeitiger Stand – derzeitige Erwartungen

Auf dem Weg zum Durchbruch-Szenario für Wasserstoff Benchmarks für Kostensenkung & aktuelle Handlungsfelder

- Die zentralen (Kosten-) Ziele
 - Grünstrom-Einstandskosten frei Elektrolyse ≤40 €/MWh
 - Elektrolyse-Investkosten von heute ca. 700 €/kW um ≥75% senken
 - Auslastung der Elektrolyseanlagen von ≥4.000 Stunden sichern
 - internationale Antransportkosten auf 0,5 €/kg H₂ senken/begrenzen
 - fossile Energieträger mit ≥150 €/t CO₂ bepreisen
- Vielfältige Optionen/Notwendigkeiten zur Schließung der (heutigen/ zukünftigen) Wirtschaftlichkeitslücke

- Betriebskostenentlastung
- Investitionskostenentlastung
- Produktförderung
- Nutzungsverpflichtungen
- CO₂-Bepreisung

Wasserstoff in einer klimaneutralen Volkswirtschaft Was sind die (aktuellen) Kernkonflikte

- Notwendigkeit einer aktiven Sektorallokation
 - unstrittig: Eisen- und Stahl- sowie Chemieindustrie, spezifische Wärmeprozesse in der Industrie, Luftverkehr (SynFuels), internationale Seeschifffahrt (SynFuels), Ausbalancierung des auf variablen erneuerbaren Energien beruhenden Stromsystems
 - einiger Wahrscheinlichkeit: Langstrecken-Schwerlast-Lkw (BSZ & H2)
 - strittig: Personenkraftwagen/leichte Nutzfahrzeuge (Brennstoffzelle & Wasserstoff bzw. SynFuels), Niedertemperatur-Wärme (Gebäude)
- Aufwuchs & regulatorischer Rahmen für die (Pipeline-) Infrastruktur
- Farbenlehre
 - unstrittig: die langfristig notwendigen (großen) Mengen sind grün
 - strittig: kann/soll blauer/türkiser Wasserstoff in den n\u00e4chsten zwei
 Dekaden eine Rolle spielen
- Nachhaltigkeit von Wasserstoffimporten jenseits der Bewertungsdimension Klimaneutralität

Zum Nachlesen

 Prognos, Öko-Institut, Wuppertal-Institut (2020): Klimaneutrales Deutschland.
 Studie im Auftrag von Agora Energiewende, Agora Verkehrswende und Stiftung Klimaneutralität.

 Öko-Institut (2020): Wasserstoff sowie wasserstoffbasierte Energieträger und Rohstoffe. Eine Überblicksuntersuchung.
 Studie gefördert aus Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit

Besten Dank für Ihre Aufmerksamkeit

Dr. Felix Chr. Matthes
Energy & Climate Division
Büro Berlin
Borkumstraße 2
D-13189 Berlin
f.matthes@oeko.de
www.oeko.de
twitter.com/FelixMatthes

