Smart Grids Situation in Österreich Dipl.-Ing. Dr. Walter Tenschert Energie AG Oberösterreich Netz GmbH

Smart Grids - Was ist das?

Funktionalitäten

- Smart Metering
- Netzautomatisierung
- Dezentrale Erzeugung
- Elektromobilität
- Netzumbau
- Energiespeicher
- Verbrauchssteuerung
- Energieeffizienz
- Aufbringung
- Ausgleich Erzeugung Verbrauch
- •

Smart Grids - Was ist das?

Stakeholder

- Verbraucher
- Erzeuger
- "Aggregatoren"
- Lieferanten
- Netzbetreiber
- Gesellschaft, Politik
- Regulatoren
- Gerätehersteller
- ICT-Provider
- neue Marktteilnehmer
- •

Smart Grids - Was ist das?

Ziele und Interessenslagen

- wirtschaftlich
- technisch
- umweltbezogen
- politisch
- ideologisch
- •

Skalierung

- Giga-Mega-Kilo-Watt
- Höchst-Hoch-Mittel-Niederspannung
- kontinental international regional lokal

Smart Grids - Situation in Österreich

Wie "smart" sind die österreichischen Verteilernetze?

Welche neuen technischen Herausforderungen ergeben sich für Netzbetreiber?

Welche Lösungsansätze und Konzepte werden entwickelt?

Smart Grids - Situation in Österreich

Funktionalitäten

- Smart Metering
- Netzautomatisierung
- Dezentrale Erzeugung
- Elektromobilität
- Netzumbau

Stakeholder

Netzbetreiber

• Ziele und Interessenlagen

technisch (wirtschaftlich)

Skalierung

- Mega-Kilo-Watt
- Mittel-Niederspannung
- regional-lokal

Smart Metering

Netzautomatisierung Dezentrale Erzeugung Elektromobilität Netzumbau

Aktuelle Situation

- demnächst bis zu 100.000 Zähler operativ im Netz
- weiterer Rollout abhängig von technischen und wirtschaftlichen Rahmenbedingungen
- mehrere Teststellungen

Herausforderungen

- technischer Mindestanforderungen
- Standardisierung / Kompatibilität
- Normungslücke bei Power Line Carrier für Last Mile
- Datenschutz
- Flexibleres Eich- und Messgesetz

Smart Metering ist ein ICT-System, das auch zählt

Netzautomatisierung

Dezentrale Erzeugung Elektromobilität Netzumbau

Versorgungsqualität ist Voraussetzung

- Verfügbarkeit
- Spannungsqualität

Was ist Netzautomatisierung ?

- Automatisch ablaufende Maßnahmen im
 - normalen
 - gefährdeten
 - gestörten Netzbetrieb
- Spannungsband-Management
- Selbstheilung nach Störungen
- Störungsvermeidung

Netzautomatisierung

Dezentrale Erzeugung Elektromobilität Netzumbau

Weiterführende Netzautomatisierung

- Schaltprogramme aus Netzleitstellen
- flächendeckende online-Informationen Mittelspannung
- Verdichtung automatische Schaltgeräte
- Selbstisolierung kleiner bis kleinster Netzteile
- hohe Kosten

Weitere Lösungsansätze

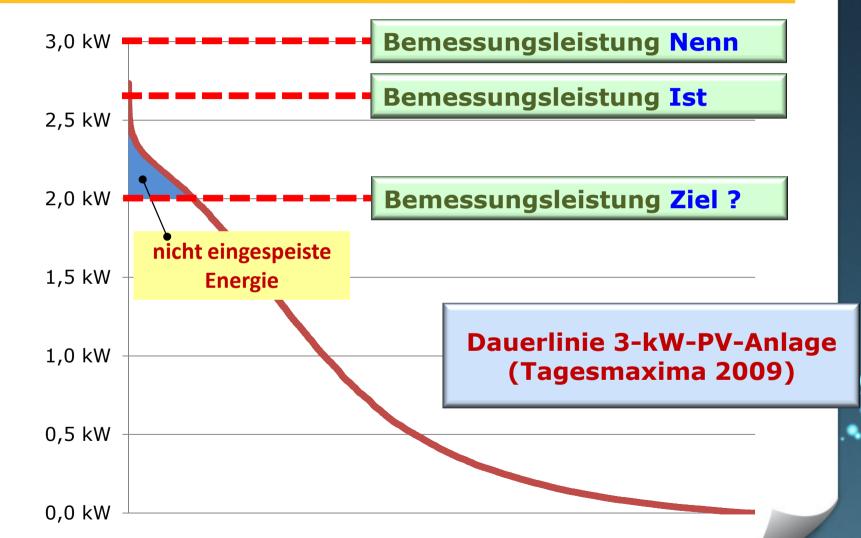
- Verkabeln von Mittelspannungsleitungen durch Wald
 - 80% der Nichtverfügbarkeit durch Mittelspannung
 - 80% der Störungen durch Waldleitungen
- Rückbau auf Niederspannung

Elektromobilität Netzumbau

• In Österreich nicht Vision sondern Realität

- Kleinwasserkraft hat Tradition
- Skalierung beachten
 - Großwasserkraft
 mehrere hundert MW
 - Windkraft
 mehrere MW

 - Photovoltaik
 ⇔ mehrere kW


Elektromobilität Netzumbau

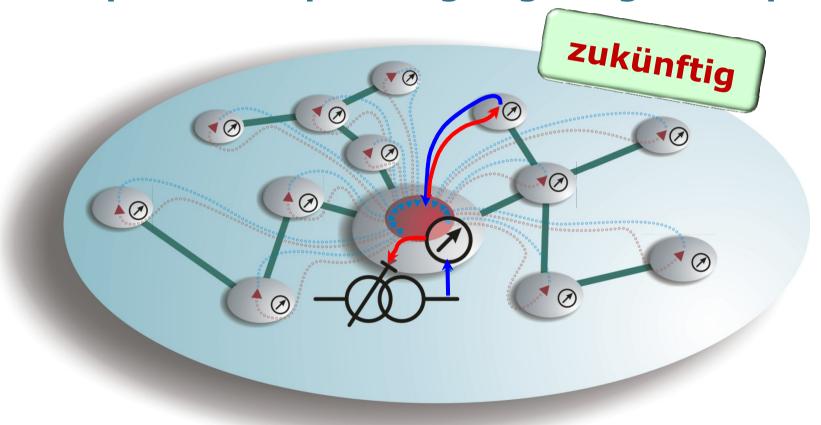
- In Österreich nicht Vision sondern Realität
 - Kleinwasserkraft hat Tradition
 - Skalierung beachten
 - Großwasserkraft ⇔ mehrere hundert MW
 - Windkraft ⇔ mehrere MW
 - Kleinwasserkraft ⇔ mehrere hundert kW
 - Photovoltaik
 ⇔ mehrere kW
- Weitere Entwicklung (Oberösterreich, Outlook 2020)
 - Traditionelle Einspeiser werden mäßig zunehmen
 - Wind punktuell
 - Photovoltaikanlagen werden vervielfacht

Elektromobilität Netzumbau

Elektromobilität Netzumbau

Herausforderung dezentrale Erzeugung

- möglichst viele Erzeugungsanlagen
- ohne unzulässigen Auswirkungen auf andere Netznutzer


Lösungsansätze

- neue Regelungskonzepte (Projekt DG Demonetz)
 - für größere ausgewählte Anlagen
- Spannungsbandmanagement
 - einphasige / mehrphasiger Anschluss
- Neue Wechselrichtergeneration
- Realanalysen an physischen Netzen
 - z.B. Projekt More PV2Grid
- von Extremwertplanung zu Wahrscheinlichkeitsplanung

Elektromobilität Netzumbau

• Beispiel neue Spannungsregelungskonzepte

Elektromobilität

Netzumbau

Heutige Situation für Netzbetreiber

- noch weitgehend visionärer Charakter
- Verbreitung hauptsächlich Kleinfahrzeuge

Zukünftige Herausforderung

- tatsächlicher Verbreitung unbekannt
 - lokal unterschiedlich
 - vorbereitende Maßnahmen kaum möglich
- Schlüssel für Netzerfordernisse ist Ladevorgang
 - © mehrere Stunden
 - emehrere 10-Minuten
 - 🙁 wenige Minuten

Netzausbau

Elektromobilität

Netzumbau

Vision Energiespeicher mit Batterien

- zukunftsweisende Idee
- vielfältige Nutzungsmöglichkeiten
- praktische Umsetzung derzeit kaum abschätzbar
 - technisch, wirtschaftlich, rechtlich, Marktregeln

Lösungsansätze und Konzepte

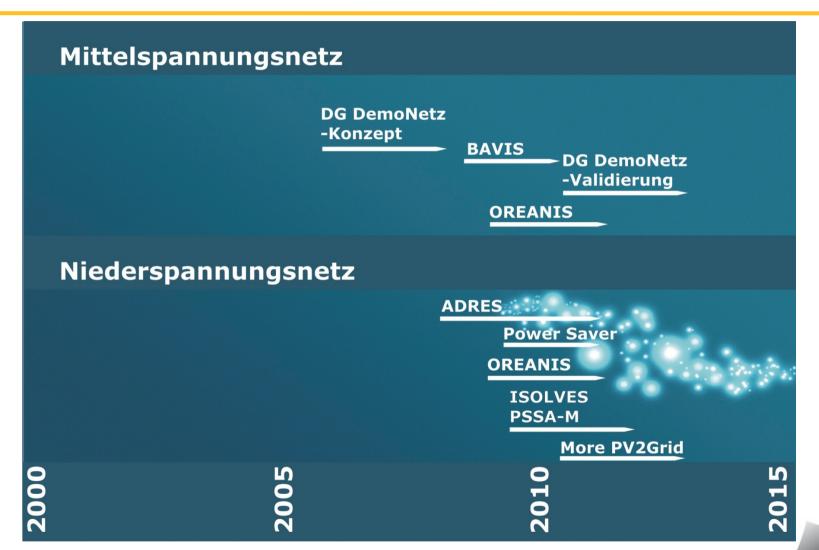
- VLOTTE
- ElectroDrive
- Austrian Mobile Power

Netzumbau

Derzeit ist Anpassung des Netzes die Regel

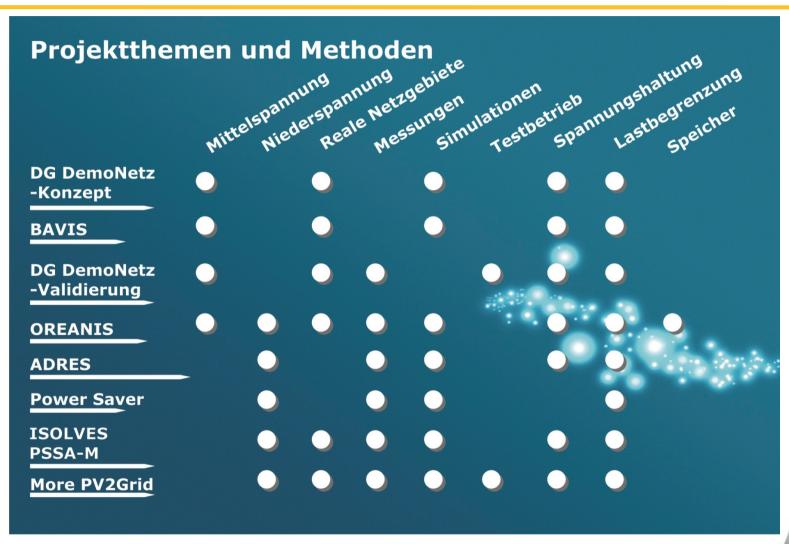
(abgesehen von wenigen Netzgebieten mit neuen Regelkonzepten)

- Einspeisung Wind in Hochspannung
- Einspeisung Photovoltaik in Niederspannung
- Leistungsstarke Ladestationen für Elektromobilität
- Einzelkomponenten kommen früher als Smart Grids
 - Einspeiser, Elektromobilität
- Herausforderung Niederspannung
 - Einspeisung aller Art, sehr große Anzahl, lokale Häufung
 - Netzumbau zahlt bisher Allgemeinheit

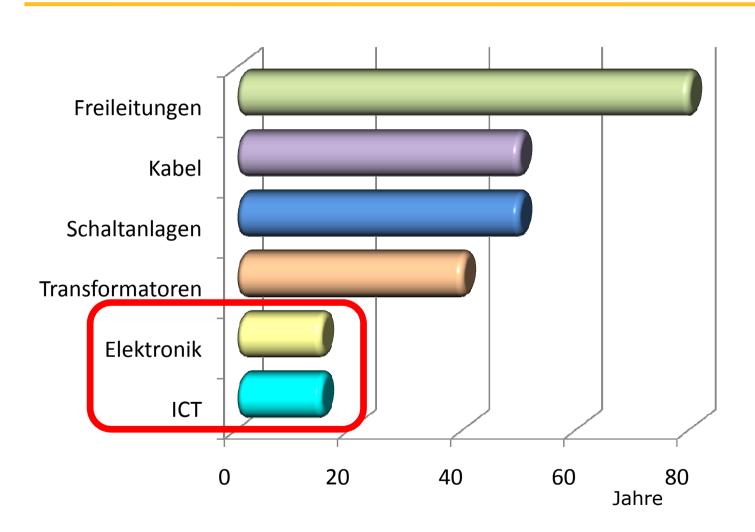

Netzumbau

Lösungsansätze und Konzepte

- Höhere Ausnützung bestehender Netze
 - Wahrscheinlichkeitsorientierte Planung Mittelspannung
 - Reserven für Ersatzversorgung nützen
 - keine rechtliche Basis
- 1000-V-Betrieb von 400-V-Netzen
 - begrenzte Einsatzmöglichkeit
- 1500-V-Gleichstromnetze ("NGÜ")
 - höchste Ausnützung von Niederspannungsnetzen
 - Lieferung/Übernahme Gleichstrom anstelle Wechselstrom
- Blindleistungskompensatoren zur Spannungsband-Stabilisierung in Mittelspannung



Smart-Grid-Projekte Zeitskala


Smart Grids und Netztarifstruktur

- Art der Netznutzung ändert sich
 - Spannung, Frequenz Spannung, Frequenz
 - Leistung Leistung
 - **Kommunikation? Energie**
- Heutige Netztarifstruktur überwiegend energieorientier 20 % Eigenerzeugung 25 % Tarifsteigerung Heutige Netztarifstruktur
- Smart Grids erfordern neue Netztarifstruktur
 - faire Verteilung der Netzkosten auf alle Netzbenutzer
 - entsprechend ihrer Nutzungsart

Lebensdauer / Stranded Investments

Sonderthemen

Cyber Security

 zunehmende Nutzung öffentlicher IT-Protokolle fördert Gefahr externer Einflussnahme

Eigensicherheit der Stromnetze

- Was ist, wenn Kommunikation nicht verfügbar ist ?
- Was ist, wenn Stromnetz nicht verfügbar ist ?
- Wie schaltet man ein Smart Grid wieder ein ?
- Inselbetrieb und Personensicherheit
- Inselbetrieb und Qualitätsverantwortung

Netzwiederaufbau nach Großstörung

Zusammenfassung

- Stromnetze sind schon recht smart
- Anforderungen bestimmen nicht Netzbetreiber
- Stark förderungsgetrieben
- Stromnetze sind bereit für Smart Grids, aber sie müssen wissen, wohin die Reise gehen soll